Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Neurobiol Dis ; 180: 106091, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967065

RESUMO

In a previous study, we have shown that parabiotic coupling of a knock-in mouse model (zQ175) of Huntington's disease (HD) to wild-type (WT) littermates resulted in a worsening of the normal phenotype as seen by detection of mutant huntingtin protein (mHTT) aggregates within peripheral organs and the cerebral cortex as well as vascular abnormalities in WT mice. In contrast, parabiosis improved disease features in the zQ175 mice such as reduction of mHTT aggregate number in the liver and cortex, decrease in blood-brain barrier (BBB) permeability and attenuation of mitochondrial impairments. While the shared circulation mediated these effects, no specific factor was identified. To better understand which blood elements were involved in the aforementioned changes, WT and zQ175 mice underwent parabiotic surgery prior to exposing one of the paired animals to irradiation. The irradiation procedure successfully eliminated the hematopoietic niche followed by repopulation with cells originating from the non-irradiated parabiont, as measured by the quantification of mHTT levels in peripheral blood mononuclear cells. Although irradiation of the WT parabiont, causing the loss of healthy hematopoietic cells, did lead to a few alterations in mitochondrial function in the muscle (TOM40 levels), and increased neuroinflammation in the striatum (GFAP levels), most of the changes observed were likely attributable to the irradiation procedure itself (e.g. mHTT aggregates in cortex and liver; cellular stress in peripheral organs). However, factors such as mHTT aggregation in the brain and periphery, and BBB leakage, which were improved in zQ175 mice when paired to WT littermates in the previous parabiosis experiment, were unaffected by perturbation of the hematopoietic niche. It would therefore appear that cells of the hematopoietic stem cell niche are largely uninvolved in the beneficial effects of parabiosis.


Assuntos
Doença de Huntington , Camundongos , Animais , Camundongos Transgênicos , Doença de Huntington/genética , Leucócitos Mononucleares/metabolismo , Modelos Animais de Doenças , Fenótipo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
Cell Mol Life Sci ; 80(2): 45, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36651994

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Anticorpos
4.
Mol Ther ; 30(4): 1500-1522, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051614

RESUMO

Huntington's disease is classically described as a neurodegenerative disorder of monogenic aetiology. The disease is characterized by an abnormal polyglutamine expansion in the huntingtin gene, which drives the toxicity of the mutated form of the protein. However, accumulation of the microtubule-associated protein tau, which is involved in a number of neurological disorders, has also been observed in patients with Huntington's disease. In order to unravel the contribution of tau hyperphosphorylation to hallmark features of Huntington's disease, we administered weekly intraperitoneal injections of the anti-tau pS202 CP13 monoclonal antibody to zQ175 mice and characterized the resulting behavioral and biochemical changes. After 12 weeks of treatment, motor impairments, cognitive performance and general health were improved in zQ175 mice along with a significant reduction in hippocampal pS202 tau levels. Despite the lack of effect of CP13 on neuronal markers associated with Huntington's disease pathology, tau-targeting enzymes and gliosis, CP13 was shown to directly impact mutant huntingtin aggregation such that brain levels of amyloid fibrils and huntingtin oligomers were decreased, while larger huntingtin protein aggregates were increased. Investigation of CP13 treatment of Huntington's disease patient-derived induced pluripotent stem cells (iPSCs) revealed a reduction in pS202 levels in differentiated cortical neurons and a rescue of neurite length. Collectively, these findings suggest that attenuating tau pathology could mitigate behavioral and molecular hallmarks associated with Huntington's disease.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Imunização Passiva , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismo
5.
Mol Psychiatry ; 27(1): 269-280, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711942

RESUMO

If theories postulating that pathological proteins associated with neurodegenerative disorders behave similarly to prions were initially viewed with reluctance, it is now well-accepted that this occurs in several disease contexts. Notably, it has been reported that protein misfolding and subsequent prion-like properties can actively participate in neurodegenerative disorders. While this has been demonstrated in multiple cellular and animal model systems related to Alzheimer's and Parkinson's diseases, the prion-like properties of the mutant huntingtin protein (mHTT), associated with Huntington's disease (HD), have only recently been considered to play a role in this pathology, a concept our research group has contributed to extensively. In this review, we summarize the last few years of in vivo research in the field and speculate on the relationship between prion-like events and human HD. By interpreting observations primarily collected in in vivo models, our discussion will aim to discriminate which experimental factors contribute to the most efficient types of prion-like activities of mHTT and which routes of propagation may be more relevant to the human condition. A look back at nearly a decade of experimentation will inform future research and whether therapeutic strategies may emerge from this new knowledge.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Príons , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Príons/genética , Príons/metabolismo
7.
Mol Psychiatry ; 26(7): 2685-2706, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33495544

RESUMO

Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Príons , Humanos , Neurônios
8.
Mol Psychiatry ; 26(9): 5441-5463, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514103

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
10.
Neurobiol Dis ; 132: 104569, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31398458

RESUMO

The types of treatments and interventions being developed for chronic neurodegenerative disorders have expanded considerably in recent years. In addition to the variety of targets being pursued, strategies have moved from symptom management to more directed disease-modifying approaches. Among them are antibody-based therapies, which are not only being evaluated for a range of tauopathies and synucleinopathies, but are also emerging as a potential application for monogenic disorders of the central nervous system (CNS), including Huntington's disease (HD). Despite the excitement around the early trial data of anti-sense oligonucleotides (ASO) treatment for such disorders, antibody therapies may hold the key to tackling another aspect of the disease that could be critical to its pathogenesis. While gene-based methodologies are designed to lower, predominantly within cellular elements, mutant huntingtin protein (mHtt) - the genetic product of HD - the pathological protein is abundant in free forms and in several compartments including the cerebrospinal fluid, the plasma and the extracellular matrix. With accumulating evidence for the spreading and seeding capacities of mHtt, it may indeed be essential to target the protein both intracellularly and extracellularly. Therefore, free forms of mHtt not only represents an ideal target for antibodies, but one that needs to be addressed if meaningful and maximal clinical benefits are to be expected. This review explores the potential use of antibody-based therapies to treat HD, including the rationale for this approach as well as the pre-clinical data supporting it. The potential challenges that will need to be considered if such route is to be pursued clinically are also discussed.


Assuntos
Anticorpos/uso terapêutico , Doença de Huntington/terapia , Imunização/métodos , Imunização/tendências , Animais , Humanos , Proteína Huntingtina/antagonistas & inibidores
11.
Acta Neuropathol ; 137(6): 981-1001, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30788585

RESUMO

In recent years, evidence has accumulated to suggest that mutant huntingtin protein (mHTT) can spread into healthy tissue in a prion-like fashion. This theory, however, remains controversial. To fully address this concept and to understand the possible consequences of mHTT spreading to Huntington's disease pathology, we investigated the effects of exogenous human fibrillar mHTT (Q48) and huntingtin (HTT) (Q25) N-terminal fragments in three cellular models and three distinct animal paradigms. For in vitro experiments, human neuronal cells [induced pluripotent stem cell-derived GABA neurons (iGABA) and (SH-SY5Y)] as well as human THP1-derived macrophages, were incubated with recombinant mHTT fibrils. Recombinant mHTT and HTT fibrils were taken up by all cell types, inducing cell morphology changes and death. Variations in HTT aggregation were further observed following incubation with fibrils in both THP1 and SH-SY5Y cells. For in vivo experiments, adult wild-type (WT) mice received a unilateral intracerebral cortical injection and R6/2 and WT pups were administered fibrils via bilateral intraventricular injections. In both protocols, the injection of Q48 fibrils resulted in cognitive deficits and increased anxiety-like behavior. Post-mortem analysis of adult WT mice indicated that most fibrils had been degraded/cleared from the brain by 14 months post-surgery. Despite the absence of fibrils at these later time points, a change in the staining pattern of endogenous HTT was detected. A similar change was revealed in post-mortem analysis of the R6/2 mice. These effects were specific to central administration of fibrils, as mice receiving intravenous injections were not characterized by behavioral changes. In fact, peripheral administration resulted in an immune response mounting against the fibrils. Together, the in vitro and in vivo data indicate that exogenously administered mHTT is capable of both causing and exacerbating disease pathology.


Assuntos
Neurônios GABAérgicos/metabolismo , Proteína Huntingtina/genética , Agregados Proteicos , Animais , Ansiedade/etiologia , Encéfalo/patologia , Linhagem Celular Tumoral , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/patologia , Éxons , Comportamento Exploratório , Feminino , Neurônios GABAérgicos/ultraestrutura , Humanos , Proteína Huntingtina/administração & dosagem , Proteína Huntingtina/química , Proteína Huntingtina/toxicidade , Células-Tronco Pluripotentes Induzidas/citologia , Injeções , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Monócitos , Atividade Motora , Neuroblastoma/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/toxicidade
12.
Mol Psychiatry ; 24(3): 364-377, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29487401

RESUMO

There is compelling evidence that the pathophysiology of many neurodegenerative diseases includes dysregulation of the immune system, with some elements that precede disease onset. However, if these alterations are prominent, why have clinical trials targeting this system failed to translate into long-lasting meaningful benefits for patients? This review focuses on Huntington's disease, a genetic disorder marked by notable cerebral and peripheral inflammation. We summarize ongoing and completed clinical trials that have involved pharmacological approaches to inhibit various components of the immune system and their pre-clinical correlates. We then discuss new putative treatment strategies using more targeted immunotherapies such as vaccination and intrabodies and how these may offer new hope in the treatment of Huntington's disease as well as other neurodegenerative diseases.


Assuntos
Doença de Huntington/imunologia , Doença de Huntington/terapia , Imunoterapia/métodos , Humanos , Doença de Huntington/genética
13.
Neurobiol Dis ; 124: 163-175, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30408591

RESUMO

The production of extracellular vesicles (EV) is a ubiquitous feature of eukaryotic cells but pathological events can affect their formation and constituents. We sought to characterize the nature, profile and protein signature of EV in the plasma of Parkinson's disease (PD) patients and how they correlate to clinical measures of the disease. EV were initially collected from cohorts of PD (n = 60; Controls, n = 37) and Huntington's disease (HD) patients (Pre-manifest, n = 11; manifest, n = 52; Controls, n = 55) - for comparative purposes in individuals with another chronic neurodegenerative condition - and exhaustively analyzed using flow cytometry, electron microscopy and proteomics. We then collected 42 samples from an additional independent cohort of PD patients to confirm our initial results. Through a series of iterative steps, we optimized an approach for defining the EV signature in PD. We found that the number of EV derived specifically from erythrocytes segregated with UPDRS scores corresponding to different disease stages. Proteomic analysis further revealed that there is a specific signature of proteins that could reliably differentiate control subjects from mild and moderate PD patients. Taken together, we have developed/identified an EV blood-based assay that has the potential to be used as a biomarker for PD.


Assuntos
Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Doença de Parkinson/sangue , Idoso , Biomarcadores/sangue , Contagem de Células Sanguíneas , Eritrócitos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Doença de Huntington/sangue , Doença de Huntington/diagnóstico , Doença de Huntington/patologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Proteômica
14.
J Neurol Neurosurg Psychiatry ; 90(3): 272-283, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567722

RESUMO

Huntington's disease (HD) is a hereditary disorder that typically manifests in adulthood with a combination of motor, cognitive and psychiatric problems. The pathology is caused by a mutation in the huntingtin gene which results in the production of an abnormal protein, mutant huntingtin (mHtt). This protein is ubiquitously expressed and known to confer toxicity to multiple cell types. We have recently reported that HD brains are also characterised by vascular abnormalities, which include changes in blood vessel density/diameter as well as increased blood-brain barrier (BBB) leakage. OBJECTIVES: Seeking to elucidate the origin of these vascular and BBB abnormalities, we studied platelets that are known to play a role in maintaining the integrity of the vasculature and thrombotic pathways linked to this, given they surprisingly contain the highest concentration of mHtt of all blood cells. METHODS: We assessed the functional status of platelets by performing ELISA, western blot and RNA sequencing in a cohort of 71 patients and 68 age- and sex-matched healthy control subjects. We further performed haemostasis and platelet depletion tests in the R6/2 HD mouse model. RESULTS: Our findings indicate that the platelets in HD are dysfunctional with respect to the release of angiogenic factors and functions including thrombosis, angiogenesis and vascular haemostasis. CONCLUSION: Taken together, our results provide a better understanding for the impact of mHtt on platelet function.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Proteína Huntingtina/sangue , Doença de Huntington/sangue , Ativação Plaquetária/fisiologia , Adulto , Idoso , Proteínas Angiogênicas/sangue , Animais , Fatores de Coagulação Sanguínea/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Fator 2 de Crescimento de Fibroblastos/sangue , Humanos , Doença de Huntington/complicações , Masculino , Camundongos , Pessoa de Meia-Idade , Contagem de Plaquetas
15.
J Neurol ; 265(11): 2704-2712, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30209650

RESUMO

The production and release of extracellular vesicles (EV) is a property shared by all eukaryotic cells and a phenomenon frequently exacerbated in pathological conditions. The protein cargo of EV, their cell type signature and availability in bodily fluids make them particularly appealing as biomarkers. We recently demonstrated that platelets, among all types of blood cells, contain the highest concentrations of the mutant huntingtin protein (mHtt)-the genetic product of Huntington's disease (HD), a neurodegenerative disorder which manifests in adulthood with a complex combination of motor, cognitive and psychiatric deficits. Herein, we used a cohort of 59 HD patients at all stages of the disease, including individuals in pre-manifest stages, and 54 healthy age- and sex-matched controls, to evaluate the potential of EV derived from platelets as a biomarker. We found that platelets of pre-manifest and manifest HD patients do not release more EV even if they are activated. Importantly, mHtt was not found within EV derived from platelets, despite them containing high levels of this protein. Correlation analyses also failed to reveal an association between the number of platelet-derived EV and the age of the patients, the number of CAG repeats, the Unified Huntington Disease Rating Scale total motor score, the Total Functional Capacity score or the Burden of Disease score. Our data would, therefore, suggest that EV derived from platelets with HD is not a valuable biomarker in HD.


Assuntos
Biomarcadores/sangue , Plaquetas/metabolismo , Vesículas Extracelulares/metabolismo , Doença de Huntington/sangue , Adulto , Idoso , Feminino , Humanos , Proteína Huntingtina/metabolismo , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA